Hover over colored terms to explore their meaning

E=ρε0B=0×E=tB×B=μ0J+μ0ε0tE \begin{aligned} \htmlClass{term-divergence}{\nabla \cdot} \htmlClass{term-electric}{\vec{E}} &= \frac{\htmlClass{term-charge}{\rho}}{\htmlClass{term-permittivity}{\varepsilon_0}} \\ \htmlClass{term-divergence}{\nabla \cdot} \htmlClass{term-magnetic}{\vec{B}} &= \htmlClass{term-zero}{0} \\ \htmlClass{term-curl}{\nabla \times} \htmlClass{term-electric}{\vec{E}} &= -\htmlClass{term-timederiv}{\frac{\partial}{\partial t}}\htmlClass{term-magnetic}{\vec{B}} \\ \htmlClass{term-curl}{\nabla \times} \htmlClass{term-magnetic}{\vec{B}} &= \htmlClass{term-permeability}{\mu_0}\htmlClass{term-current}{\vec{J}} + \htmlClass{term-permeability}{\mu_0}\htmlClass{term-permittivity}{\varepsilon_0}\htmlClass{term-timederiv}{\frac{\partial}{\partial t}}\htmlClass{term-electric}{\vec{E}} \end{aligned}

Gauss's law: Divergence of electric field equals charge density over permittivity. Divergence of magnetic field is zero (no monopoles). Faraday's law: Curl of electric field equals negative time change of magnetic field. Ampère-Maxwell: Curl of magnetic field equals permeability times current plus displacement current.